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SUMMARY

A novel method is presented for assessing the convergence of a sequence of statistical distributions gener-
ated by direct Monte Carlo sampling. The primary application is to assess the mesh or grid convergence,
and possibly divergence, of stochastic outputs from non-linear continuum systems. Example systems
include those from fluid or solid mechanics, particularly those with instabilities and sensitive dependence
on initial conditions or system parameters. The convergence assessment is based on demonstrating empir-
ically that a sequence of cumulative distribution functions converges in the L∞ norm. The effect of finite
sample sizes is quantified using confidence levels from the Kolmogorov–Smirnov statistic. The statistical
method is independent of the underlying distributions.

The statistical method is demonstrated using two examples: (1) the logistic map in the chaotic regime, and
(2) a fragmenting ductile ring modeled with an explicit-dynamics finite element code. In the fragmenting
ring example the convergence of the distribution describing neck spacing is investigated. The initial
yield strength is treated as a random field. Two different random fields are considered, one with spatial
correlation and the other without. Both cases converged, albeit to different distributions. The case with
spatial correlation exhibited a significantly higher convergence rate compared with the one without spatial
correlation. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Engineers and scientists are increasingly challenged to simulate ever more complex physical
phenomena, from the response of structures under extreme loading events, such as car crashes, to
the long term behavior of the Earth’s climate. Owing to the high-consequence decisions made using
such simulations, it is important that the mathematical models and their numerical approximations
be verified and validated [1, 2]. Verification is concerned with assessing the accuracy of a numerical
approximation to the solution of a mathematical model. Validation is concerned with ensuring that
the mathematical model is an adequate description of reality by comparison with experimental
data [3, 4]. Many models of macroscopic phenomena are based on continuum theories represented
as partial differential equations or integral equations. For these models one necessary condition for
verification is that numerical approximations of the solution converge with discretization refinement.
Without convergence, numerical results are unreliable, rendering subsequent validation, uncertainty
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quantification efforts, and general use in engineering design and scientific prediction unreliable as
well. An interesting example of nonconvergence with mesh refinement has been demonstrated by
Meulbroek et al. [5] in their modeling of a fragmenting ductile ring using an Eulerian hydrocode.

For stochastic systems the task of verification is particularly challenging as one now has to deal
with issues related to the probability domains. The stochastic dimension of a system refers to the
number of random variables in the state description. For many uncertainty quantification methods
the computational cost increases dramatically as the stochastic dimension increases. An overview of
several methods for uncertainty quantification in engineering applications is given by Schuëller and
Pradlwarter [6] including perturbation procedures, expansion methods such as Karhunen–Loève
and polynomial chaos expansions, as well as direct and advanced Monte Carlo sampling. Monte
Carlo sampling refers to methods in which a set of simulations is run with input values for each
simulation obtained by sampling the distributions of the input parameters. Based on the simulation
results, approximate distribution functions can be formed for output quantities of interest. Direct
Monte Carlo sampling indicates that sampling of the input parameters is unbiased, while advanced
Monte Carlo sampling refers to techniques such as importance sampling in which sampling is
biased to maximize information in regions of interest. For systems with low stochastic dimension,
the expansion methods are particularly effective [7, 8], although their series convergence may be
slow in highly non-linear problems with instabilities and bifurcations [9–12]. Although the current
numerical limit for which expansion methods are computationally feasible is steadily increasing
[13], for systems with high stochastic dimension one must still resort to Monte Carlo sampling
[6]. Examples of systems with high stochastic dimension include those from porous flow, fluid
dynamics, and solid dynamics in which the spatially dependent parameters are treated as random
fields with relatively small correlation lengths. The Monte Carlo method converges with increasing
sample size at a rate that is independent of the stochastic dimension, but typically requires large
sample sizes to achieve the required accuracy.

There are instances in engineering practice when a numerical method is used or enhanced to
simulate physical behavior that is outside the original well-posed mathematical formulation. For
example, in structural mechanics it is well known that ductile fracture is preceded by material
softening, a constitutive effect, which causes the governing system of equations to become ill-
posed; the effect is a mesh dependency in the associated discretized problem [14, 15]. In addition,
‘element erosion’ or ‘element death’ is often used in Lagrangian finite element simulations to
model arbitrary fracture [16]. Many physical systems that involve material softening and fracture
are stochastic in nature, such as pervasive fracture processes [17] and fragmentation [18]. Monte
Carlo simulations of these stochastic systems will have finite-sampling errors in the empirical
cumulative distribution function (CDF) that are on the order of 1/

√
N , where N is the sample

size. An accurate assessment of mesh convergence must quantify these finite sampling effects,
for example, with confidence intervals. If sample sizes are too small (confidence intervals too
large), mesh convergence rates may be inaccurate, and may even fail to detect mesh divergence.
An empirical demonstration of convergence is, however, only one step in the verification process.
A broader task is verifying that the converged distribution is a unique solution of the original
mathematical model.

In this paper, a statistical method is presented for assessing the convergence properties of a
sequence of CDFs generated by direct Monte Carlo sampling. The Kolmogorov–Smirnov (KS)
statistic is used to quantify the error in the sampled CDFs due to finite sample sizes. An important
property of the KS statistic is that it is independent of the particular form of the CDF, and assumes
only that the CDF is continuous. Herein, the KS statistic is used to assess the confidence level on
the L∞ distance between two sampled CDFs. With at least three mesh resolutions and sufficiently
large sample sizes at each mesh resolution, a mesh convergence rate can be estimated. Conversely,
given a postulated mesh convergence rate, the required sample size necessary to resolve the mesh
discretization error can be estimated. One of the main challenges in verifying convergence is the
large sample sizes required. To partially address this issue an optimization problem is formulated
that minimizes total ensemble simulation cost over the space of sample sizes, given constraints on
sampling accuracy. The optimization problem is solved using the method of Lagrange multipliers.
The statistical method is demonstrated using two examples: (1) a logistic map that has been
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spatially discretized with piecewise-linear segments and (2) a fragmenting ductile ring modeled
with an explicit-dynamics finite element code. For the second example, the convergence behavior
of the critical neck statistics is investigated for two different random field representations of the
initial yield strength, one with spatial correlation and the other without.

Recently, the use of the L1 distance has been proposed by Roy and Oberkampf [19, 20] for use
in model validation by comparing sampled CDFs from both experiments and model simulations.
However, a statistic characterizing the effect of finite sample sizes was not presented. Some
advantages of using L1 distance as opposed to the L∞ distance are discussed in Section 8. Our
future research will focus on comparing and contrasting these and other distance functions.

This paper is organized as follows. Section 2 reviews the definitions of the CDF, the prob-
ability distribution function, and convergence in distribution. Section 3 reviews the KS statistic
and discusses the deleterious effects of quantization and correlated sampling. Section 4 presents
the statistical method for assessing convergence in distribution. The method is applied to two
examples: (1) the chaotic logistic map in Section 5 and (2) a fragmenting ductile ring modeled
with an explicit-dynamics finite element code in Section 6. The optimization problem of mini-
mizing total ensemble simulation cost given constraints on sampling accuracy is formulated
and solved in Section 7. Finally, conclusions and discussion of the future work are given in
Section 8.

2. CONVERGENCE IN DISTRIBUTION

In this section, the definitions of the CDF, the probability distribution function, and convergence
in distribution are briefly reviewed. A more detailed discussion of these concepts, and probability
theory in general, is given in References [21, 22].

A real-valued random variable is a function Y that maps a sample space � into the real
numbers R. For the fragmenting ring example given in Section 6 the sample space is the set of all
possible fragments resulting from all possible simulations. In this case several random variables
are possible including fragment volume, fragment momentum, and fragment temperature. These
are continuous random variables, as opposed to discrete random variables such as number-of-
fragments. A probability measure P is a mapping of subsets of the sample space � into the unit
interval [0,1] with P(∅)=0, P(�)=1, such that P is countably additive [22]. The distribution of
probability of the random variable Y is characterized by the CDF F(y) defined as

F(y) :=P{�∈�;Y (�)�y}, y ∈R or simply F(y) :=P(Y�y). (1)

The CDF gives the probability that the random variable Y has a value less than or equal to y. The
CDF of a random variable has the following properties [21, Ch. 3.2]:

(1) 0�F(y)�1 for all y, and limy→−∞ F(y)=0 and limy→∞ F(y)=1,
(2) F(y) is non-decreasing: F(y1)�F(y2) whenever y1<y2,
(3) F(y) is right-continuous: limy→a+ F(y)= F(a),
(4) P(a<Y�b)= F(b)− F(a)�0 for a�b.

If F(y) is differentiable, then the probability density function (PDF) is defined as

f (y) := dF(y)

dy
. (2)

As an example consider a random variable with a CDF given by the two-parameter Weibull
distribution [23]

F(y)=
{

1−e−(y/�)�, y�0,

0, y<0,
(3)
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Figure 1. The CDF and PDF of the two-parameter Weibull distribution defined in Equations (3) and (4),
respectively, with �=5 and �=1.

where �>0 is the shape parameter (or modulus), and �>0 is the scale parameter. The Weibull PDF
is given by

f (y)=

⎧⎪⎨
⎪⎩

�

�

(
y

�

)�−1

e−(y/�)�, y�0,

0, y<0.

(4)

Figure 1 shows the Weibull CDF and PDF for �=5 and �=1. The two-parameter Weibull distri-
bution will be used in the example given in Section 6.

For a collection of random variables Yh with real index h>0, it is possible to explore the limit of
Yh as h →0. If this limit exists and is equal to the random variable Y , then Yh is said to converge
to Y as h →0. In the case of random variables there are a number of different modes in which this
convergence may be understood. These are almost sure convergence, convergence in probability,
and convergence in distribution [24, Ch. 6]. Each mode of convergence may be stronger or weaker
than another according to whether convergence in one mode implies the other. Convergence in
distribution does not, in general, imply the other two modes of convergence. However, both almost
sure convergence and convergence in probability imply convergence in distribution. The focus of
this paper is convergence in distribution. Let Fh and F be the CDFs of the random variables Yh
and Y , respectively. The random variable Yh is said to converge in distribution to Y if

lim
h→0

Fh(y)= F(y) (5)

for all y ∈R such that F is continuous [24, Ch. 6].
Now consider a physical system and an associated mathematical model. If the model is well-

posed, then a numerical approximation to the model should converge to a unique solution with
discretization refinement. Actually verifying this convergence for complex non-linear multiphysics
models can be challenging. Consider a sequence of model discretizations H1,H2, . . . with corre-
sponding mesh sizes h1,h2, . . . where the mesh sizes satisfy h j<hi for all j>i . In engineering
practice, convergence is empirically verified by examining a quantity of interest y and its approx-
imation yh as h →0. If the physical system is stochastic in nature then the quantity of interest
will be a random variable Y with an associated CDF F(y). The sequence of model discretizations
will produce a sequence of CDFs F1(y), F2(y), . . . . However, each CDF Fi (y) itself can only be
approximated using, for example, uncertainty quantification methods [6]. The focus of this paper
is the method of direct Monte Carlo sampling. The following two sections develop a statistical
method for assessing convergence in distribution of a sequence of CDFs F1(y), F2(y), . . . where
each CDF is approximated with direct Monte Carlo sampling.
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3. KOLMOGOROV–SMIRNOV STATISTIC

A key aspect of verifying convergence in distribution using direct Monte Carlo sampling is quan-
tifying the effect of finite sample sizes. Here, this sampling error is quantified using the KS
statistic [25]. The KS statistic is widely used in non-parametric statistical testing [26] and is briefly
reviewed in this section. An important property of the KS statistic is that it is distribution free
(independent of the actual form of F(y)). The main restriction on the use of the KS statistic is
the assumption of a continuous CDF, which precludes the use of discrete random variables. (In
many cases a discrete quantity of interest can be exchanged for a continuous one. For example, in
a fragmentation simulation the continuous quantity fragment mass could be used in place of the
discrete quantity number-of-fragments.)

The KS statistic is based on the sample CDF or empirical CDF (eCDF) defined as follows [27].
Let {yi } be a set of N independent and identically distributed random samples. The eCDF SN (y)
is defined as the proportion of samples not exceeding y

SN (y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, y<y1,

r

N
, yr�y<yr+1, r =1, . . . , N −1,

1, yN �y,

(6)

where (y1, y2, . . . , yN ) are the samples arranged in increasing order. If F(y) is the CDF of the
random variable from which the samples are drawn, then the Strong Law of Large Numbers gives
that SN (y) converges almost surely to F(y) as N →∞ [24, Ch. 7]. In other words, as the sample
size gets larger the eCDF is expected (in a probabilistic sense) to become an increasingly more
accurate approximation to the CDF. This probability is quantified using the KS statistic.

The KS statistic DN is defined as the L∞ distance between SN (y) and F(y)

DN :=‖SN (y)− F(y)‖∞ := sup
y∈R

|SN (y)− F(y)|. (7)

An asymptotic distribution (N →∞) for DN was first derived by Kolmogorov in 1933 [25]

lim
N→∞

P(DN �z/
√

N )=1−2
∞∑
j=1

(−1) j−1 exp(−2 j2z2) := p(z). (8)

This result gives the probability that the KS statistic DN will be less than a certain value z for a
given sample size N . The function p(z) is plotted in Figure 2. In particular, p(1.3581)=0.95 and
p(1.6276)=0.99. Equation (8) then gives

P

(
DN �1.3581√

N

)
=0.95 and P

(
DN �1.6276√

N

)
=0.99 for N →∞. (9)

The quantity to the right of each inequality within the parentheses represents the critical value
of DN for the given probabilities p(z)=0.95 and p(z)=0.99. Birnbaum [28] used recurrence
relations originally derived by Kolmogorov [25] to obtain the critical values of DN for any N .
Birnbaum observed that the asymptotic distribution given by Equation (8) is conservative and
accurate to within 2% for N>50 [28]. In practice, the assessment of convergence in distribution
through Monte Carlo sampling will require sample sizes much larger than 50, so that the asymptotic
relations in Equation (9) are more than adequate. The following method development, however, is
not dependent upon this approximation. The tabulated critical values of DN for N<50 could be
used if required.

Because the measure of sample divergence (Equation (7)) is the maximum absolute deviation
between SN (y) and F(y), DN may be used to set confidence limits for the entire eCDF [27]. Let
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Figure 2. The Kolmogorov distribution defined in Equation (8).

d� represent the critical value of DN for probability p(z)=1−�. Here, � is commonly called the
significance level and 1−� the confidence level. In particular, from Equation (9),

d0.05 = 1.3581√
N

and d0.01 = 1.6276√
N

. (10)

It follows from Equation (8) that

P

(
DN = sup

y∈R

|SN (y)− F(y)|>d�

)
=�. (11)

This statement may be inverted into the confidence statement

P[SN (y)−d��F(y)�SN (y)+d�, ∀y ∈R]=1−�. (12)

Thus, there is a band of width ±d� around the eCDF SN (y), and there is probability (confidence)
1−� that the CDF F(y) lies completely within this band [27]. An equivalent interpretation is a
band of width ±d� around the CDF F(y), and there is probability 1−� that the eCDF SN (y) lies
completely within the band

P[F(y)−d��SN (y)�F(y)+d�, ∀y ∈R]=1−�. (13)

The confidence limits can be used to estimate the sample size required to approximate the CDF
with a given accuracy. Suppose one is interested in approximating the CDF with an accuracy of
10% with 95% confidence (P(DN �0.1)=0.95). From the first relation of Equation (9), a sample
size of (1.3581/0.1)2 ≈184 is needed. To approximate the CDF with an accuracy of 1% with 95%
confidence (P(DN �0.01)=0.95) requires a sample size of (1.3581/0.01)2 ≈18444.

In order to visualize these results consider the two-parameter Weibull probability distribution
shown in Figure 1. Figure 3 shows sample eCDFs for two sample sizes: (a) N =50 and (b) N =500.
The 95% confidence intervals are also shown, and the resulting KS statistic is identified. For the
sample size N =50 the critical KS statistic is d0.05 =1.36/

√
50=0.19. For the given sample the

KS statistic is D =0.1, which is less than the critical value. For the sample size N =500 the critical
KS statistic is d0.05 =1.36/

√
500=0.06. For the given sample the KS statistic is D =0.03, which

is again less than the critical value. For these particular samples, the eCDFs fall within the 95%
confidence band.
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Figure 3. Example of the Kolmogorov–Smirnov statistic applied to the two-parameter Weibull distribution
shown in Figure 1. Sample eCDFs are shown for two sample sizes: (a) N =50 and (b) N =500. The

resulting KS statistic D is identified. The 95% confidence bands are also shown.

3.1. Cluster sampling

In the field of statistics, there are several types of sampling techniques. These include simple
random sampling (the most commonly used sampling technique), stratified random sampling,
cluster sampling, systematic sampling [29, Ch. 2], and importance sampling [30]. In simple random
sampling, each element of the sample space is equally probable, that is, there is no bias in choosing
the samples. The KS statistic is predicated on the use of simple random sampling. This require-
ment on the KS statistic precludes the use of Monte Carlo methods that use importance sampling
[30]. In cluster sampling, the sample space is first partitioned into groups or clusters. A simple
random sample is then taken from the collection of clusters, and each cluster is then subsam-
pled. Fragmentation modeling is, in effect, cluster sampling. In fragmentation simulations several
fragments are created in a single simulation (see Section 6). In this case, each simulation is a
cluster. Cluster sampling could be deleterious if the sampling results are interpreted as being a
simple random sample [31]. In particular, the confidence bounds developed in Section 3 could
be inaccurate. For example, in fragmentation modeling an extreme case would occur if all frag-
ments in a simulation were of nearly equal size, but the fragment size varied from simulation to
simulation. In this case there would be no variation within a cluster, unlike the full population. A
simple random sample could be obtained in this case by using only one (random) fragment per
simulation.

Several statistics exist that can be used to test whether a cluster sample can be used as a
simple random sample. One example is the intracluster correlation coefficient which provides
a measure of homogeneity within the clusters, but is only defined for clusters of equal sizes
[29, Ch. 5]. An alternative measure is the adjusted population correlation coefficient, R2

a , defined
as [29, Ch. 5]

R2
a :=1− S2

c

S2
. (14)

Here, S2
c is the aggregate of within-cluster variances, and S2 is the variance of the entire sample

S2
c := 1∑N

i=1(Mi −1)

N∑
i=1

Mi∑
j=1

(yij − yi )
2 (15)
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Figure 4. Effect of quantization on an otherwise continuous cumulative distribution function. The quanti-
zation level is �y =0.025, and the error in the KS statistic due to quantization is DQ =0.04.

and

S2 := 1(∑N
i=1 Mi

)
−1

N∑
i=1

Mi∑
j=1

(yij − y)2, (16)

where yij represents the j th sample from i th cluster, y is the entire sample mean, yi is the mean of
the i th cluster, N represents the number of clusters, and Mi represents the size of cluster i . R2

a is
typically positive since quantities within a cluster tend to be more similar than quantities selected
at random from the full population [29, Ch. 5]. The extreme case would be if all elements within
a cluster were identical causing the numerator in Equation (14) to be zero and R2

a =1. For the
use of a cluster sample as a simple random sample, R2

a should be close to zero. This test will be
applied to the example problem given in Section 6.

3.2. Quantization effect

In digital calculations there is an inherent discretization and quantization of continuous variables
due to finite precision. This quantization will cause an otherwise continuous CDF to be piecewise
constant as illustrated in Figure 4. Since the KS statistic applies only to continuous CDFs, an
error DQ is introduced. The quantization of continuous variables can arise from the mesh or
grid discretization as well. For example, consider a Lagrangian finite element simulation of a
fragmentation process. Since each fragment is the aggregate of finite elements, the fragment
volume is quantized at the level of the finite element volume. These quantization effects prevent
the KS statistic from approaching zero as N →∞. The example problem given in Section 6 will
demonstrate this effect.

If the CDF is differentiable then DQ is given by

DQ =max
y∈R

(
dF

dy

)
�y, (17)

where �y represents the quantization magnitude. In Figure 4, DQ =0.04 which could be resolved
with a sample size of N =1153 at the 95% confidence level (from Equation (9)). It would therefore
be futile to increase the sample size beyond N =1153. If �y is due to the domain discretization,
then DQ will converge to zero as the discretization length decreases. However, depending upon
this convergence rate and sample size, DQ may or may not be greater than the sampling error.
For the fragmentation example given in Section 6, the fragment quantization will decrease with
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order h since the problem is quasi one dimensional, whereas in a full 3D fragmentation problem
the fragment quantization will decrease with order h3.

4. ASSESSING CONVERGENCE IN DISTRIBUTION

Consider a sequence of continuous CDFs, Fi (y), i =1,2, . . . . To be consistent with the KS statistic
defined in Equation (7), the L∞ norm is used to measure the distance between two CDFs, Fi (y)
and Fj (y)

‖Fi (y)− Fj (y)‖∞ := sup
y∈R

|Fi (y)− Fj (y)|. (18)

Since the limit of Fi (y) as i →∞ is typically unknown, the assessment of convergence in distri-
bution will be based on verifying that the sequence is Cauchy. A sequence of continuous functions
Fi (y), i =1,2, . . ., is Cauchy in the L∞ norm if for each ε>0 there exists an n(ε) for which
‖Fi (y)− Fj (y)‖∞<ε whenever i>n and j>n. Since the space of continuous functions with the
L∞ norm is complete, so that any Cauchy sequence of continuous functions is uniformly conver-
gent to a continuous function [32], it follows that if a sequence of continuous CDFs is Cauchy in
the L∞ norm, then the limit CDF is also continuous. Furthermore, from Equation (5) the sequence
converges in distribution. In practice, convergence will be empirically assessed or verified by
examining the sequential pairwise L∞ distance in the first few terms of a mesh refinement study.
If the pairwise distance converges to zero with order h�, then this is strong evidence that the full
sequence is convergent [3].

Consider now two CDFs, Fi (y) and Fj (y), in the discretization sequence and their eCDFs, SNi (y)
and SN j (y), obtained through Monte Carlo sampling with sample sizes Ni and N j , respectively,
as shown in Figure 5. Let the normed difference between the two CDFs, as defined by Equation
(18), be denoted di, j . Similarly, let the normed difference between the two eCDFs be denoted by
dNi ,N j . The normed difference between the CDF Fi (y) and its eCDF SNi (y) is the KS statistic
DNi defined in Equation (7). This distance is bounded by the critical value d�i as described by
Equation (13). Similarly, let DN j represent the normed difference between the CDF Fj (y) and
its eCDF SN j (y). This distance is bounded by the critical value d� j . These distances are shown
schematically in Figure 5. A confidence statement on the difference between the true distance di, j
and the sampled distance dNi ,N j is given by

P[|di, j −dNi ,N j |�d�i +d� j = zi/
√

Ni +z j/
√

N j ]= (1−�i )(1−� j ), (19)

where zi and z j are a function of the chosen significance levels �i and � j , respectively, as
demonstrated in Equation (9). Equation (19) can be derived as follows. By inspection of Figure 5
we see that

di, j +d�i +d� j �dNi ,N j ⇒dNi ,N j −di, j�d�i +d� j . (20)

Similarly

dNi ,N j +d�i +d� j �di, j ⇒−(dNi ,N j −di, j )�d�i +d� j . (21)

Combining these two equations gives

|di, j −dNi ,N j |�d�i +d� j . (22)

From Equation (13) the probability that the eCDF of distribution i is in the band Fi (y)±d�i is
1−�i and the probability that the eCDF of distribution j is in the band Fj (y)±d� j is 1−� j .
Assuming independence, the joint probability is thus (1−�i )(1−� j ). The sampled distance dNi ,N j

can now be reported using a confidence bound, dNi ,N j ±(zi/
√

Ni +z j/
√

N j ).
Equation (19) can also be used to estimate the required sample size in order to resolve a distance

di, j between two CDFs. However, since the true distance di, j is not in general known a priori
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Figure 5. Nomenclature used in the proof of Equation (19). Two CDFs, Fi (y) and Fj (y), the eCDFs of
their samples, SNi (y) and SN j (y), and their confidence bounds, are shown along with L∞ distances.

but only the sampled distance dNi ,N j , the mutual sample sizes Ni and N j have to increase until
the sampled distance is resolved by the confidence band to an acceptable accuracy. To this end, a
relative sampling accuracy � is defined as

� := zi/
√

Ni +z j/
√

N j

di, j
. (23)

The true distance di, j is estimated via dNi ,N j as the ensemble sampling progresses resulting in
an estimated relative sampling accuracy �est.‡ Choosing a value of � (e.g. 0.1), Ni and N j may
be increased uniformly until �est��. Similarly, for a sequence of n mesh levels, the following
algorithm may be used:

for i =1 : n−1
Choose a relative sampling accuracy � with 0<�<1.
Choose significance levels �i and �i+1.
do

Increase sample sizes Ni and Ni+1 uniformly for mesh levels i and i +1.
Calculate dNi ,Ni+1 and �est.

loop until (�est��)
next i

Note that this algorithm suggests increasing uniformly the sample sizes within a pair of mesh
levels. In practice, the ‘cost’ of a simulation increases significantly with an increase in mesh
refinement. Thus, it is advantageous to minimize the number of samples at the more refined mesh
level. A method for estimating minimal sample sizes for a sequence of meshes for several cost
functions is given in Section 7. For a cost function that is independent of mesh size, a simple

‡For the example problems in this paper, the quantity dNi ,N j is calculated using the Matlab [33] function kstest2
available in the statistics toolbox. The function output KSSTAT is precisely dNi ,N j .
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scaling analysis can give an estimate of the growth rate of the sample size with mesh refinement.
If the distance between CDFs converges with order h�, then for a refined mesh size h the sample
size will scale as

N

N0
=
(

h0

h

)2�

, (24)

where N0 represents the acceptable sample size for mesh size h0. For a linear convergence rate,
�=1, then the sample size should increase at a rate of 2�=2. If the mesh size is reduced by 1/2,
then, according to Equation (24), the sample size should increase by a factor of 4. For a quadratic
convergence rate, �=2, then the sample size should increase at a rate of 2�=4. If the mesh size
is reduced by 1/2, then the sample size should increase by a factor of 16.

5. EXAMPLE: CHAOTIC LOGISTIC MAP

As a first example, consider the logistic map defined by

L(x)=ax(1−x), x ∈R, (25)

where a is a real-valued parameter. The logistic map is a one degree-of-freedom discrete-time
deterministic dynamical system. A trajectory is obtained by starting with an initial condition
x0 ∈ [0,1] and letting x1 = L(x0), x2 = L(x1), etc. The computational simplicity of the logistic map
allows for the simulation of a large number of discretization levels and sample sizes.

Despite its apparent simplicity, the logistic map exhibits complex dynamical and statistical
behavior. It has been extensively studied and is well characterized [34–36]. Some of the well-known
dynamical and statistical properties are briefly reviewed. Let a =4 so that L maps the interval
[0,1] onto itself as shown in Figure 6(a). For this case, L is chaotic, and there are a dense set
of trajectories that are extremely sensitive to initial conditions [35]. Figure 6(b) demonstrates this
sensitivity to initial conditions. An initially localized set of trajectories quickly expands, filling the
domain. Figure 7(a) shows two trajectories with slightly different initial conditions, x0 =0.1 and
x0 =0.1000001. The two trajectories become noticeably different after 20 iterations. Figure 7(b)
gives the relative frequency histogram of the logistic map after 100 iterations using an ensemble of
104 trajectories with initial conditions x0 drawn from the interval [0,1] with uniform probability.
Note that it is more probable that a trajectory will be located near x =0 and x =1 than near
x =0.5. The exact probability density can be obtained by using the Frobenius–Perron operator
which governs the evolution of probability densities under such maps [35]. For the logistic map,
any initial probability density f0(x) (of initial conditions) converges rapidly to the unique invariant
probability density f∗(x) given by

f∗(x)= 1

�
√

x(1−x)
. (26)

This probability density is shown in Figure 8(a) which may be compared with the results of
Figure 7(b). The CDF of Equation (26) is given by

F∗(x)= 2

�
arctan

√
x

1−x
. (27)

This CDF is shown in Figure 8(b).
Now consider the following piecewise-linear approximation (or mesh) of L(x)

Lh(x)= L(xi−1)+ L(xi )−L(xi−1)

xi −xi−1
(x −xi−1), x ∈ [xi , xi−1], i =1, . . . ,n (28)

with h =max(xi −xi−1, i =1, . . . ,n). Examples of this approximation are shown in Figure 9. The
map L0.5 is simply the ‘tent’ map which is also known to be chaotic on a dense set of trajectories
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Figure 6. (a) Logistic map L(x)=4x(1−x) and (b) an initially localized set of trajectories with initial
conditions in the interval [x0, x0 +ε] quickly expands demonstrating sensitivity to initial conditions, a

necessary condition for chaotic behavior. Here, x0 =0.1 and ε=0.001.

Figure 7. (a) Two trajectories of the logistic map with initial conditions x0 =0.1 and
x0 =0.1000001 demonstrating sensitivity to initial conditions. The two trajectories become notice-
ably different after 20 iterations and (b) relative frequency histogram of the logistic map after

100 iterations (x100) using an ensemble of 104 trajectories.

similar to the logistic map [37]. However, the probabilistic properties of the tent map are quite
different from those of the logistic map. The invariant probability density of the tent map is simply
the uniform density as shown in Figure 8 (as L0.5(x)). The invariant density of the logistic map
has singularities at x =0 and x =1, whereas the invariant density of the tent map is everywhere
finite. Consider then the following question. Does the invariant density of Lh(x) converge to that
of L(x) as h →0? The convergence behavior of a sequence of invariant probability densities could
be studied by using the Frobenius–Perron operator to obtain the exact invariant density for each
Lh . The authors, however, are not aware of such a study. In order to demonstrate the proposed
method for verifying convergence in distribution, the statistics of these operators are instead studied
numerically.

The results to follow use Monte Carlo sampling (initial conditions x0 drawn from the unit
interval [0,1] with uniform probability) and 100 iterations (x100) of the given map. Owing to
the computational simplicity of the logistic map and its discrete approximations, it is possible to
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Figure 8. (a) Invariant probability density f∗ of the logistic map given by Equation (26) and the tent map
(L0.5) shown in Figure 9 and (b) cumulative distribution functions.

Figure 9. Piecewise-linear approximations Lh(x) to the logistic map L(x). L0.5 is the ‘tent’ map.

run very large sample sizes. To get a sense of the sample sizes needed to assess convergence in
distribution, the results from the logistic map with sample sizes N =102 and N =104 are shown
in Figure 10. The exact CDF of the logistic map given by Equation (27) and tent map are shown
for comparison. The N =104 sample is the same as that used in Figure 7(b) and is virtually
indistinguishable from the exact CDF. For the N =102 sample the KS statistic is only about 1/2
that of the KS statistic between the CDF of L(x) and L0.5(x). This gives a rough idea of the
sample sizes needed to investigate the convergence behavior of Lh(x) as h →0.

Consider now a sequence of discretizations, h = (1/2)i , i =2, . . . ,10, and a sequence of sample
sizes, N =10 j , j =2, . . . ,6. Since the converged CDF is known (Equation (26)), the discretization
and sampling error can be assessed directly instead of using pairwise differences. The confidence
bound given in Equation (19) then reduces to one term. Figure 11(a) shows the resulting error
norm for each discretization level and sample size but without confidence bounds. Figure 11(b)–(f)
gives the same results but with 95% confidence bounds obtained using Equation (19). The ranges
on the error bars do not appear symmetric due to the logarithmic axes. (Note that since the KS
statistic is positive, the minimum value of an error bar is restricted to be greater than or equal to
zero. In figures with a logarithmic scale a zero value is represented by an arrow.) Figures 11(b) and
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Figure 10. Two eCDFs of sample size N =102 and N =104 of the logistic map after 100 iterations (x100).
The exact (invariant) CDFs of the logistic map and tent map are shown for comparison.

(c) indicate that the 95% confidence bounds for N =102 and N =103 are still quite large relative
to the true discretization error even at the coarsest mesh refinement levels h =1/4 and h =1/8.
Note from Figure 11(f) that for the smallest mesh size h =1/1024, even sample sizes on the order
of N =106 are insufficient to resolve the discretization error with 95% confidence. Also, note that
in Figure 11(c) the 95% confidence bound for h =1/512 and N =103 does not contain the error
predicted at N =106, unlike every other mesh level and sample size. This observation reinforces
the fact that there is a 5% probability that the true error will be outside the 95% confidence bound.

In practice, the converged CDF is typically unknown. Convergence can then be assessed in a
Cauchy sense by examining the pairwise L∞ distance between successive discretization levels.
Figure 12 gives the pairwise L∞ distance between successive discretization levels using the same
sequence of discretizations and sample sizes used in Figure 11. The mesh size h represents the
smallest mesh size of the given pair of meshes. Note that the confidence bound has been reduced
from 95 to 90% as noted in the proof of Equation (19). Also, the size of the confidence bounds
is roughly doubled compared with those given in Figure 11. Note that for all mesh levels the
confidence bounds for sample sizes N =102 to N =105 bracket the pairwise differences given at
N =106.

Figures 11 and 12 indicate that the convergence rate with mesh refinement is approximately
1.0 throughout the range of mesh levels. A confidence bound on the convergence rate could be
obtained by looking at the minimum and maximum values of adjacent confidence bounds. However,
unless the confidence bounds are very tight this bound could be relatively large and even negative.
In general, relatively large sample sizes are needed to accurately assess the convergence rate as
opposed to a single pairwise difference. Optimum sampling at each mesh level is thus advantageous
and is discussed in Section 7.

6. EXAMPLE: FRAGMENTING RING

As a second example the expanding ring experiments of Benson and Grady [38] are modeled
using the explicit-dynamics finite element code Alegra [39]. In these experiments a thin aluminum
1100-0 ring with outer diameter 32 mm and a 1mm×1mm square cross-section is expanded by
electromagnetic forces and ultimately fragmented. Strain rates are on the order of 104/s. Because
of the small cross-sectional width to diameter ratio of the ring as well as the ductile nature
of aluminum 1100-0, ring fracture is precipitated by necking followed by fracture through the
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Figure 11. L∞ error norm in the sampled CDFs obtained from piecewise-linear approximations to the
logistic map for various sample sizes N as a function of mesh size h. Confidence bounds are 95%: (a)
confidence bounds are not shown; (b) confidence bounds are shown for N =102; (c) confidence bounds
are shown for N =103; (d) confidence bounds are shown for N =104; (e) confidence bounds are shown

for N =105; and (f) confidence bounds are shown for N =106.

cross-section. The experimentally observed necks and fracture locations are distributed unevenly
with numerous unfractured necks. The existence of unfractured necks is attributed to Mott release
waves [18].

It is well known that ductile fracture is preceded by material softening which can cause the
governing PDEs to become ill-posed with accompanying mesh dependent (nonconvergent) results
[14, 15]. Much research has been devoted to studying material softening, and a number of techniques
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Figure 12. Pairwise L∞ difference in the sampled CDFs obtained from piecewise-linear approximations
to the logistic map for various sample sizes N as a function of mesh size h. Confidence bounds are
90%: (a) confidence bounds are not shown; (b) confidence bounds are shown for N =102; (c) confidence
bounds are shown for N =103; (d) Confidence bounds are shown for N =104; (e) confidence bounds are

shown for N =105; and (f) confidence bounds are shown for N =106.

exist to regularize the governing equations, for example, by including nonlocal or rate dependent
material behavior [40, 41]. For this example, since any fracture occurs at a neck but not all necks
fracture, the focus here is not on the broader issue of fragment distribution convergence in the
presence of material softening, but rather on the more immediate issue of convergence in neck
spacing. For this reason the neck spacing statistics are analyzed before any fractures actually
occur, in particular t =40�s. This time threshold was chosen to be as large as possible while
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Figure 13. Ring finite element mesh with four elements through the thickness (denoted by R0) consisting
of 6016 hexahedral elements. Additional mesh refinements were obtained through uniform hierarchical

refinement: R1, 48 K elements; R2, 385 K elements; R3, 3.08 M elements.

assuring that the plastic strain within the necks is in the pre-softening regime and the finite
element mesh distortion is still moderate. Furthermore, only necks that have reduced the cross-
sectional area below a threshold of A/Ao =0.6, with Ao the initial cross-section area of 1mm2,
are included in the statistical analysis. The material between these critical necks is referred to as
‘pre-fragments’ in the subsequent discussion. Because the actual ring fracture is not modeled, direct
comparisons with the experimental fragmentation statistics will not be made here. The statistical
method presented in the previous sections is used to analyze the convergence of the pre-fragment
distribution under hierarchical mesh refinement. Figure 13 shows the base finite element mesh
(denoted by R0) consisting of four elements through the thickness and a total of 6016 hexahedral
elements. Additional mesh refinements are obtained through uniform hierarchical refinement in
which each element is subdivided into 8 elements resulting in mesh R1 with 48 K elements, mesh
R2 with 385 K elements, and mesh R3 with 3.08 M elements.

The neck locations are generally believed to be governed by variability in initial geometrical
imperfections and material properties. Several researchers have suggested seeding material prop-
erties with variability in numerical simulations to capture such effects (e.g. [42–44]). For this
example, the initial yield stress is perturbed. Two different random field representations of the
initial yield stress are considered: (1) a random field with spatial correlation obtained through a
method based on the Hilbert space-filling curve (discussed below) with each resulting cell treated as
independent and identically distributed and (2) a random field with no spatial correlation in which
each finite element is treated as independent and identically distributed. The inelastic behavior of
the aluminum is modeled using the Johnson–Cook [45] plasticity model with isotropic hardening.
The thermal dependence and strain rate dependence are turned off leaving only the power-law
hardening term

	=	yield + H
n
p, (29)

where 	 is the Von Mises flow stress, 
p is the equivalent plastic strain, H is the hardening modulus,
n is the hardening exponent, and 	yield is the initial yield stress. Here, n =0.34, H =20MPa, and
the distribution for 	yield is given by the Weibull probability density function (Equation (4)) with
a median value of 80 MPa and Weibull modulus (shape parameter) �=25 (the scale parameter
�=median(	yield)/(ln2)1/� =78.8357). This distribution is shown in Figure 14.

Alegra has the option of letting any material parameter vary spatially based on an iterate
of the Hilbert space-filling curve [46]. A space-filling curve is a continuous mapping x :R→
R3 from the open unit interval on the real line onto a higher dimensional region such as a
cube. The continuity properties of the space-filling curve imply that ‖x(r )−x(s)‖<a|r −s| for
some constant a [46]. Thus, if r and s are close together, then their image is guaranteed to be
close as well. However, the reverse is not true. The space-filling algorithm in Alegra creates
irregularly shaped cells or aggregates of a specified size, and thus introduces a new length scale
in the problem. Note that the Hilbert space-filling curve is not a physics-based spatial correlation
model but is merely a numerically expedient method for introducing variability based on a user
specified correlation distance. For this example, the aggregate size is taken to be 1/4 of the ring
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Figure 14. Weibull probability density function for the initial yield stress with Weibull modulus �=25.

Figure 15. Zoomed-in views of realizations of the initial yield stress for mesh refinements R0, R1, and R2.
The top row is the uncorrelated random field case in which each element is independent and identically
distributed with distribution shown in Figure 14. The bottom row is the correlated random field case in
which the initial yield stress is obtained from the Hilbert space-filling curve and each cell is indepen-
dent and identically distributed with distribution shown in Figure 14 (red∼	yield/median(	yield)>1.125,

blue∼	yield/median(	yield)<0.75).

cross-sectional width, namely 0.25 mm. Note that all mesh resolutions used in this example, R0–R4,
resolve this length scale. Each aggregate is idealized as homogeneous and isotropic. Before each
simulation a randomly oriented coordinate transformation is applied to the finite element mesh in
order to remove the coordinate system bias in the space-filling curve algorithm. Zoomed-in views
of realizations of both the uncorrelated and correlated initial yield stress are shown in Figure 15
for mesh refinements R0, R1, and R2. For the uncorrelated case, the stochastic dimension is equal
to the number of elements in the finite element mesh, and is therefore dependent on the mesh
refinement level. For the correlated case, the stochastic dimension is approximately equal to the
number of elements in the base mesh R0 (∼6000).

Instead of simulating the actual electromagnetic loading on the ring, a pressure step input of
50 MPa is applied for 10�s on the inner radius. The deformed state of the ring at t =40�s for
a correlated random field realization is shown in Figure 16. The color represents the equivalent
plastic strain. Note the various stages of neck formation. In all simulations there was no significant
visual difference between deformed rings using either the correlated or uncorrelated random field
realizations. The cross-sectional area of the deformed ring was extracted using the coordinated
system shown in Figure 17. The postprocessing software Paraview [47] was used to extract the cross-
sectional area as a function of circumferential angle, A(�), by using cutting planes on the deformed

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:279–306
DOI: 10.1002/nme



VERIFYING MESH CONVERGENCE IN MONTE CARLO SIMULATIONS 297

Figure 16. Deformed state of the expanding ring with color representing equivalent plastic strain
(red>50%), t =40�s. Note the various stages of neck formation.

Figure 17. Ring coordinate system used in extracting the radial cross-sectional area A(�).

Figure 18. Extracted ring cross-sectional area A(�) at t =40�s.

mesh. For all mesh refinement levels, at least four cutting planes were used per representative
element size. An extracted cross-sectional area curve is shown in Figure 18. All relative minima
with values below the area threshold of 0.6 mm were extracted and identified as critical necks. The
material between two neighboring critical necks was identified as a pre-fragment.

The Monte Carlo sampling consisted of 100 simulations at each mesh refinement level,
R0–R4. The R0 and R1 mesh refinement simulations were performed using a single CPU, whereas
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Figure 19. Cumulative distribution functions of the pre-fragment size for the four mesh refinement
levels, R0-R4, with spatial correlation in initial yield stress. The results are combined from a Monte
Carlo ensemble of size 100 for each mesh level. Ensemble pre-fragment sample sizes are NR0 =1714,

NR1 =2274, NR2 =2386, NR3 =2421. The pairwise L∞ differences are also shown (cf. Figure 20).

the R2 and R3 refinement simulations were performed with 16 and 128 CPUs, respectively.
For each simulation the random fields were generated using a unique random seed. Figure 19
shows the eCDF of the combined pre-fragment statistics for each mesh refinement level for the
spatially correlated random field. The pairwise L∞ differences are also shown. The ensemble
pre-fragment sample sizes are NR0 =1714, NR1 =2274, NR2 =2386, NR3 =2421. Figure 20
shows the eCDF of the combined pre-fragment statistics for each mesh refinement level for the
spatially uncorrelated random field. The ensemble pre-fragment sample sizes are NR0 =1686,
NR1 =2424, NR2 =2766, NR3 =2905. Note the stair-step patterns in the pre-fragment eCDFs for
the R0 mesh refinement in both Figures 19 and 20. This pattern is the result of the quantization
effect described in Section 3.2. The distance between necks is quantized by the finite element
mesh, since the area minima shown in Figure 18 can only occur at the finite element interfaces.
This quantization effect is not visually noticeable in the other mesh refinements but is still
present.

The pairwise L∞ differences are shown in Figure 21(a) and (b) for the spatially correlated and
uncorrelated random fields, respectively, as a function of finite element size (minimum in pair).
The red error bars represent the sampling error (90% confidence, Equation (19)), and the additional
blue error bars represent the quantization error (Equation (17)). Note that the quantization error
decreases with mesh size. These same results are combined in Figure 22 but with logarithmic
axes. Estimated convergence rates in the L∞ norm are given as 1.4 for the spatially correlated
case and 0.86 for the spatially uncorrelated case. The spatially uncorrelated case still gives an
indication of convergence, albeit with a reduced rate compared with the spatially correlated case.
Also, note by comparing Figure 19 with Figure 20 that the two cases converge to different
distributions.

Note that all the pre-fragments generated for a given mesh size were collected and used in the
eCDFs of Figures 19 and 20. As discussed in Section 3.1 this is a form of cluster sampling and
should be used with caution when the statistical method is based on simple random sampling [31].
Using the adjusted population correlation coefficient given by Equations (14)–(16) for this example
results in R2

a ≈10−2 for each mesh refinement level. Since this value is close to zero the cluster
sampling used in this example is a good approximation to a simple random sample, and therefore
the use of the KS statistic is justified.
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Figure 20. Cumulative distribution functions of the pre-fragment size for the four mesh refinement
levels, R0-R4, without spatial correlation in initial yield stress. The results are combined from a Monte
Carlo ensemble of size 100 for each mesh level. Ensemble pre-fragment sample sizes are NR0 =1686,

NR1 =2424, NR2 =2766, NR3 =2905. The pairwise L∞ differences are also shown (cf. Figure 19).

Figure 21. Pairwise L∞ differences as a function of mesh size for both the: (a) spatially correlated and
(b) spatially uncorrelated initial yield stress field. Error bars are given for both the sampling error (90%

confidence) and the quantization error.

7. OPTIMUM SAMPLE SIZES

The main challenge in verifying convergence in distribution using Monte Carlo sampling is the
large sample sizes required. It is therefore critical to use only the minimum required sample size
at each mesh refinement level to resolve the pairwise L∞ distance between two mesh levels.
This set of minimum sample sizes can be obtained using a simulation cost function, an assumed
convergence rate, and a specified relative sampling accuracy. For the cost function, suppose for
simplicity that each simulation for a given mesh produces one sample of the output variable.
The cost of running an ensemble of simulations at a given mesh refinement level is then directly
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Figure 22. Pairwise L∞ differences as a function of mesh size for both the spatially correlated and
uncorrelated initial yield stress field. Error bars represent the sum of the sampling error (90% confidence

bounds) and the quantization error. Estimated convergence rates are shown.

proportional to the number of samples. A reasonable cost function Fc for a sequence of n meshes
is given by

Fc(N1, N2, . . . , Nn) :=a1 N1 +a2 N2 +·· ·+an Nn . (30)

The coefficients ai may be determined by running at least one simulation at each mesh refinement
level and determining the subjective cost (e.g. computation time, mesh size, computer memory
used) of a simulation at each mesh refinement level relative to the base level. Only the ratios of the
coefficients are needed, for example, a2 =4a1, a3 =16a1, etc. The optimization problem is then
to minimize the cost function Fc subject to constraints on the sampling accuracy between each
successive pair of mesh refinement levels. Let the relative sampling accuracy be denoted by �.
Using Equation (23) the relative accuracy constraint Ci between mesh levels i and i +1 is given by

Ci (Ni , Ni+1) := zi/
√

Ni +zi+1/
√

Ni+1

di,i+1
−�=0, i =1, . . . ,n−1. (31)

The true distances di,i+1 are of course unknown and are only estimated via dNi ,Ni+1 as the ensemble
sampling progresses. However, the di,i+1 can be estimated a priori if d1,2 is known and one
assumes a convergence rate �.

The constrained minimization problem given by Equations (30) and (31) may be solved using
the technique of Lagrange multipliers [48]. The augmented Lagrangian LA associated with the
constrained problem is defined as

L A(N1, . . . , Nn,1, . . . ,n−1) := Fc(Ni )+1C1 +·· ·+n−1Cn−1, (32)

where i , i =1, . . . ,n−1 are the Lagrange multipliers. The necessary conditions for a local
minimum of the constrained problem are given by

�L A

�Ni
=0, i =1, . . . ,n. (33)
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Substituting Equation (32) into Equation (33) yields

N1 =
(

1z1

2a1

)2/3

,

N2 =
(

(1 +2)z2

2a2

)2/3

,

N3 =
(

(2 +3)z3

2a3

)2/3

,

...

Nn−1 =
(

(n−2 +n−1)zn−1

2an−1

)2/3

,

Nn =
(

n−1zn

2an

)2/3

.

(34)

Substituting Equation (34) into the constraint equations given in Equation (31) gives(
1

2a1z1

)−1/3

+
(

1 +2

2a2z2

)−1/3

= �d1,2,

(
1 +2

2a2z2

)−1/3

+
(

2 +3

2a3z3

)−1/3

= �d2,3,

...(
n−3 +n−2

2an−2zn−2

)−1/3

+
(

n−2 +n−1

2an−1zn−1

)−1/3

= �dn−2,n−1,

(
n−2 +n−1

2an−1zn−1

)−1/3

+
(

n−1

2anzn

)−1/3

= �dn−1,n.

(35)

These are n−1 non-linear equations for the n−1 Lagrange multipliers. The banded structure of
the equations can be exploited to analytically obtain a single non-linear equation in one unknown.
Given a numerical solution to this single non-linear equation, subsequent back substitution gives
the solution for the remaining Lagrange multipliers. Once the Lagrange multipliers are known,
the sample sizes can be obtained from Equation (34). Sufficient conditions for critical points to be
local minima are given in Lueberger [48] based on the Hessian matrix of LA. For the present case
the Hessian matrix of LA is positive definite for all values of Ni . Therefore, the critical points are
indeed global minima.

The case of only two meshes, n =2, can be solved analytically. The optimum sample sizes N1
and N2 are given by

N1 = (z1/2a1)2/3

(�d1,2)2
[(2a1z1)2/3 +(2a2z2)2/3]3, (36)

N2 = (z2/2a2)2/3

(�d1,2)2
[(2a1z1)2/3 +(2a2z2)2/3]3. (37)

Note that N2/N1 = (z2a1/z1a2)2/3, and if z1 = z2 then N2/N1 = (a1/a2)2/3. As expected for equal
costs, a2 =a1, then N2 = N1. If the second mesh is eight times more expensive than the first (a2 =
8a1), then N2 =4N1. Also, note that Equations (36) and (37) are invariant under the substitution
�d1,2 →c�d1,2, Ni →c−2 Ni , i =1,2. Thus, once the optimum sample sizes are found for a given
value of the product �d1,2, the optimum sample sizes can be found for any other value of �d1,2.
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Table I. Optimum sample sizes for the cost function Fc = N1 + N2 + N3 +·· · and linear convergence rate
(�=1) (d1,2 =0.4, �=0.5, zi =1.36).

n N1 N2 N3 N4 N5 N6

2 185 185
3 82 750 731
4 119 328 2989 2932
5 98 475 1311 11956 11722
6 108 391 1898 5244 47819 46889

Table II. Optimum sample sizes for the cost function Fc = N1 +2N2 +4N3 +·· · and linear convergence
rate (�=1) (d1,2 =0.4, �=0.5, zi =1.36).

n N1 N2 N3 N4 N5 N6

2 237 149
3 77 949 594
4 125 305 3793 2374
5 96 497 1219 15171 9494
6 109 384 1986 4875 60683 37974

Table III. Optimum sample sizes for the cost function Fc = N1 +4N2 +16N3 +·· · and linear convergence
rate (�=1) (d1,2 =0.4, �=0.5, zi =1.36).

n N1 N2 N3 N4 N5 N6

2 310 123
3 72 1240 491
4 130 285 4960 1964
5 94 520 1137 19838 7856
6 110 376 2079 4546 79351 31424

Table IV. Optimum sample sizes for the cost function Fc = N1 +8N2 +64N3 +·· · and linear convergence
rate (�=1) (d1,2 =0.4, �=0.5, zi =1.36).

n N1 N2 N3 N4 N5 N6

2 417 105
3 67 1666 417
4 136 267 6662 1665
5 93 544 1066 26646 6658
6 111 369 2175 4262 106583 26629

In particular, if �d1,2 is reduced by a factor of two, then N1 and N2 are increased by a factor of
four. This scaling result holds for the general case as well

�di,i+1 → c�di,i+1, i =1,2, . . . ,n−1,

Ni → c−2 Ni , i =1,n.
(38)

The optimum sample sizes are given in Tables I–IV for the linear cost functions Fc = N1 + N2 +
N3 +·· ·, Fc = N1 +2N2 +4N3 +·· ·, Fc = N1 +4N2 +16N3 +·· ·, and Fc = N1 +8N2 +64N3 +·· ·,
respectively, with d1,2 =0.4, �=0.5, a 95% confidence level (zi =1.36), and a linear convergence
rate (�=1). These values are also plotted in Figure 23. Note that these cost functions mainly affect
the sample sizes near the end of the mesh sequence, in particular the last two, with only minor
perturbations on the earlier values of the sequence. In general, the sample size of the last mesh in
the sequence is reduced at the expense of the sample size of the second to last mesh. The optimum
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Figure 23. Optimum sample sizes for a sequence of n meshes and various cost functions
(�=1,d1,2 =0.4,�=0.5). The optimum sample sizes for different values of � and d1,2 can be

obtained by using the scaling relation in Equation (38).

sample sizes for different values of � and d1,2 can be obtained by using the scaling relation in
Equation (38).

For an example application of this optimization method the logistic map given in Section 5
is used. For this relatively simple system, the cost per simulation is to a first approximation
independent of the mesh size. The mesh sequence has length n =9 so the cost function is Fc =
N1 + N2 +·· ·+ N9. As discussed at the end of Section 5, the convergence rate is approximately
linear (�≈1). From Figure 12 d1,2 ≈0.1. (Of course, this information would not normally be
known a priori.) Taking the sampling accuracy �=0.5 and zi =1.36, solving Equation (35) for the
Lagrange multipliers, and substituting into Equation (34) yields the following the sample sizes:
Ni =1660, 6710, 26200, 110×103, 400×103, 1.94×106, 5.37×106, 49.0×106, 48.0×106. The
results from simulations using these sample sizes are shown in Figure 24(b). The uniform sampling
results shown in Figure 12(f) are shown again in Figure 24(a) for comparison. Since the assumed
convergence rate of �=1 is fairly accurate for this example, the relative size of the confidence
bands is nearly constant as desired. In practice when the convergence rate is unknown, the updated
values dNi ,Ni+1 could be used to obtain new estimates of the true optimal sample sizes in an
iterative manner.

8. CONCLUSIONS

One necessary condition for verification is that numerical approximations converge with discretiza-
tion refinement. A method was presented for verifying mesh convergence in a sequence of statistical
distributions generated by direct Monte Carlo sampling. The primary application of this method
is to assess the mesh or grid convergence, and possibly divergence, of stochastic outputs from
non-linear continuum systems, for example from fluid or solid mechanics, particularly those with
instabilities and sensitive dependence on initial conditions or system parameters. The method veri-
fies convergence in distribution using the L∞ norm in the space of continuous CDFs. The effect
of finite sample sizes is quantified using confidence levels from the KS statistic. The method is
independent of the particular form of the underlying distributions, and only assumes that they
are continuous. An empirical demonstration of convergence is, however, only one step in the
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Figure 24. Pairwise L∞ difference in sampled CDFs obtained from piecewise-linear approximations to
the logistic map as a function of mesh size h: (a) uniform sample size N =106 and (b) near-optimal

sampling using the method given in Section 7. The 90% confidence bounds are shown.

verification process. A broader task is verifying that the converged distribution is a unique solution
of the original mathematical model.

The statistical method was demonstrated using two examples: (1) the logistic map in the chaotic
regime, and (2) a fragmenting ductile ring modeled with an explicit-dynamics finite element
code. In the first example, the logistic map was discretized with piecewise-linear approximations.
Using Monte Carlo sampling, the sequence of invariant distributions corresponding to the each
piecewise-linear approximation was shown to converge in distribution to the invariant distribution
of the logistic map. For the expanding ring example, the convergence of the distribution describing
neck spacing was investigated for two different random field representations of the initial yield
stress, one with spatial correlation and the other without. Both cases converged albeit to different
distributions. The case with spatial correlation exhibited a significantly higher convergence rate
compared with the one without spatial correlation.

The main challenge in applying the presented statistical method is the relatively large samples
sizes required. This issue is common to Monte Carlo methods in general. To partially address
this issue an optimization problem was formulated to obtain minimum sample sizes at each mesh
refinement level for a given mesh convergence rate and constraints on sampling accuracy. This
constrained optimization problem was solved using Lagrange multipliers, and demonstrated using
the first example. Tables of sample sizes were given for several cost functions and convergence
rates. Even with this minimization technique the number of required simulations is admittedly quite
large, especially at higher mesh refinement levels where the computational cost is the greatest.

While the presented method used the L∞ norm and the associated KS statistic, other distance
functions and their associated statistics could be explored as well, for example using the L1 and
L2 norms. The use of the L1 norm has been proposed by Roy and Oberkampf [19, 20] for use
in model validation. The use of these other norms might allow for a convergence assessment of
discontinuous CDFs, and they would be less sensitive to the steepness of the CDF (see Figure 20).
The required sample sizes for equivalent confidence bounds in these norms may be smaller than
those for the L∞ norm, although the O(1/

√
N ) scaling in the confidence bounds would be the

same. At first thought, an assessment of mesh convergence in only the mean or variance of
an engineering quantity of interest would seemingly require smaller sample sizes. However, the
confidence bound on the mean has the same O(1/

√
N ) scaling and is additionally proportional to

the standard deviation [29, p. 43]. One can envision examples in which the mean converged with
mesh refinement but the standard deviation diverged, or that the standard deviation had a slower
convergence rate than the mean. Thus, statements of relative sampling efficiencies are expected to
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be problem dependent and require further assumptions on the underlying distribution. Our future
research will focus on investigating these questions.

Finally, although this paper has focused on verification, once numerical simulations have been
verified to converge, the KS statistic could also be used as a validation tool in a manner analogous
to its conventional use in hypothesis testing [21, 3 13.9]. Given both a sample set from experiments
and a sample set from numerical simulations, the two-sample KS test [21, p. 485] provides a
probability (confidence) that the two sample sets are from the same distribution.
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